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Abstract

Implicit time differencing of the resistive magnetohydrodynamic (MHD) equations
can step over the limiting time scales —such as Alfvén time scales— to resolve the dy-
namic time scales of interest. However, nonlinearities present in these equations make
an implicit implementation cumbersome. Here, viable paths for an implicit, nonlinear
time integration of the MHD equations are explored using a 2D reduced viscous-resistive
MHD model. The implicit time integration is performed using the Newton-Raphson
iterative algorithm, employing Krylov iterative techniques for the required algebra-
ic matrix inversions, implemented Jacobian-free (i.e., without ever forming and storing
the Jacobian matrix). Convergence in Krylov techniques is accelerated by precondition-
ing the initial problem. A “physics-based” preconditioner, based on an operator-split
approximation to the original set of partial differential equations, is employed. The pre-
conditioner employs low-complexity multigrid techniques to invert approximately the
resulting elliptic algebraic systems. The resulting 2D reduced resistive MHD implicit
algorithm is shown to be successful in dealing with large time steps (100-250 times the
explicit Alfvén CFL limit) and fine grids (up to 256x256). The algorithm is second-
order accurate in time and efficient. Specifically, the number of Krylov iterations per
Newton iteration scales very weakly with the total number of mesh points, and the

CPU time scales as CPU ~ At=0-7,

Keywords: Jacobian-free, Newton-Krylov, multigrid, physics-based preconditioning, implicit
differencing, resistive MHD.
AMS subject classification: 65C20, 65M06, 65P20, 77A05



1 Introduction

The resistive magnetohydrodynamic (MHD) equations present a formidable challenge for
efficient implicit differencing due to the disparity of time scales, the nonlinear couplings
present in the equations, and fine grids needed to resolve current sheets. Partially implicit
(or semi-implicit) time-differencing schemes have been employed ubiquitously in multidi-
mensional calculations, in which only part of the equations is integrated implicitly. Among
such techniques we find alternating direction implicit (ADI) methods [1, 2| and specific semi-
implicit techniques for MHD |3, 4, 5, 6]. In the former, the integration is implicit in one
direction, and explicit in the others, alternating directions every time step. ADI methods
do not render the numerical integration absolutely stable for arbitrary time steps, but allow
time steps ~ 10 — 20 times larger than the explicit Courant-Friedrichs-Lewy (CFL) stability
limit Atcrg [1, 2.

Within the MHD community, semi-implicit methods have been developed in which the
discretized set of partial differential equations (PDE’s) is modified by adding implicitly and
subtracting explicitly some simple, easily invertible operator (called semi-implicit operator).
This renders the numerical method unconditionally stable for arbitrary time steps while
requiring much less work than a direct implicit integration. The semi-implicit operator
accomplishes this by slowing down the propagation of the fastest waves in the problem.
However, stability does not guarantee accuracy. The accuracy of the numerical solution
obtained with MHD semi-implicit techniques is strongly dependent on the choice of the form
of the semi-implicit operator |5, 6], and on the size of the time step employed, often requiring
time-consuming convergence studies. As a result, the time step in semi-implicit methods is
typically limited by accuracy considerations to yAt < 0.05 [5], where 4y~ determines the
time scale of interest.

There has been a recent attempt to implement a nonlinear, implicit difference scheme

for the MHD equations [7]. This approach employs block Gauss-Seidel techniques to invert



an approximate Jacobian matrix (and LU-decomposition techniques to invert the blocks) to
obtain convergence including the nonlinear terms in the equations. However, the simplifica-
tions in the Jacobian (required to render it manageable) limit the applicability of the method,
because they introduce CFL restrictions for large and moderate viscosities and resistivities.
Furthermore, the nonlinear residual is never used to check nonlinear convergence (the size of
the nonlinear update dz is used for convergence), and hence nonlinear errors stemming from
the approximate Jacobian remain unmonitored.

None of these methods employ modern approaches to deal with the grid refinement
stiffness (such as multigrid methods), and none monitor the nonlinear residual to ensure
nonlinear convergence at the implicit time level. The present document explores viable paths
for fully implicit, fully nonlinear differencing of the MHD equations. For this purpose, a 2D
reduced resistive MHD model, supporting shear Alfvén and sound waves, is employed. Two-
fluid effects (key in collisionless reconnection processes [8, 9]) will be considered in a second
stage of the research, once the fundamental approach to the —simpler— resistive problem is
mature. Convergence in the nonlinear system is achieved using the Newton-Raphson iterative
algorithm. Krylov iterative techniques [10]|, implemented Jacobian-free [11, 12] (i.e., without
ever forming and storing the Jacobian matrix), are employed for the required algebraic
matrix inversions, because of their efficiency and the possibility of accelerating convergence
via preconditioning. Here, PGMRES (preconditioned generalized minimal residuals [13]) is
employed due to the lack of symmetry in the algebraic system.

The efficiency of Krylov methods depends heavily on adequate preconditioning [10, 14].
Here, a “physics-based” (or PDE-based) preconditioner [12] —in which simplifications of the
original system of PDE’s are dictated by knowledge of the physical system— is explored.
Diagonal blocks in the preconditioner are inverted using low-complexity multigrid methods
(MG) [11, 15, 16] to remove the grid stiffness. In order to deal with the lack of diagonal
dominance characteristic of algebraic systems associated with wave propagation operators,

the method of differential approximation [17] is employed to modify the original set of dif-



ference equations to render the algebraic system diagonally dominant, while preserving its
wave propagation properties.

The rest of the paper is organized as follows. Section 2 introduces the base model
equations. Section 3 introduces the Krylov methods and the specifics of the Jacobian-free
implementation. In Sec. 4, the “physics-based” preconditioner for this particular application
is developed. Validation and efficiency results of the implicit algorithm are presented in Sec.

5, where it is numerically demonstrated that:

1. It performs nearly optimally under grid refinement (the number of Krylov iterations

scales very weakly with NV, the total number of mesh points).

2. Tt presents a sublinear scaling of the number of Krylov iterations with the implicit time

step (~ At%?), which results in a CPU time scaling ~ A¢=%7.
3. It features second-order accurate time step convergence.

Finally, we conclude in Sec. 6.

2 2D Reduced MHD model

In the 2D reduced MHD (RMHD) formalism, the magnetic field component in the ignorable
direction B, is much larger than the magnitude of the poloidal magnetic field ép. As a
result, B, ~ constant and the poloidal velocity ¢, is incompressible (V - ¥, = 0, with V|

the poloidal gradient), and the general MHD formalism reduces to [18, 19]:

Vid = w (1)
(at+m-m—%v’i)xp+Eo = 0 2)
PO +7L-Vi—vVi)y+8, = —b-Vp (3)

O +5L-VL—-DVi)p+8, = —b-V(py) (4)
PO +¥. -V —vViw+ S, = ié -V(V30) +2(2 x &) - Vp (5)



where @ is the poloidal velocity stream function (¥, = Z x V®), w is the vorticity in the
poloidal plane (w = Z-V x ¥, ), ¥ is the poloidal flux function (which gives Ep =Zx VV),
and ) is the parallel velocity (7 = ¥, + v||l;, with b = B/B ~ B/B,). Sources E, (the
applied electric field in the z direction), S"w, Sp, and S’U” have been included to balance the
decay of the equilibrium due to transport terms. The transport parameters (the kinematic
viscosity v, the resistivity 7, and the cross-field particle diffusion coefficient D) are assumed
constant; the viscosity coefficient in Eq. 3 has been chosen for convenience as isotropic and
equal to the perpendicular viscosity (Eq. 5).

The pressure is evaluated as p = pT'/m;, with m; the ion mass and T the temperature.
The temperature is assumed constant. It is assumed further that the Boussinesq approxi-
mation applies [i.e., p(7) = po + p(7) with py > p(7)|, so that p = py in the inertial terms of
Egs. 3 and 5. In Eq. 5, g is the vacuum permeability constant, and a curvature term has
been included (2(Z x &.) - Vp) [18, 19], with . = b - Vb the field line curvature. According

to the previous approximations, and for a 2D model (9, = 0), the field line curvature reads

B2

Re . In typical configurations of interest (cylinder, torus), the plasma poloidal
cross section is circular, and the poloidal magnetic field is predominantly oriented in the
angular direction 0. Hence, B'p ~ Bpé, and accordingly <, ~ —%ﬂ where 7 is the radial
unit vector.

Resistive reconnection effects are important only in the vicinity of a rational surface (at
which B;, = 0), and thus, in cylindrical geometry, only an annulus surrounding the rational
surface is considered. This annulus is assumed to be much thicker than the resistive layer,
but sufficiently thin (i.e., Ary, < 7.5, see Fig. 1) so that a rectangular approximation of
the circular layer is satisfactory (the effect of the cylindrical geometry is the inclusion of

the curvature term). In this approximation, the cylindrical coordinates are approximated by

Cartesian coordinates by identifying dr — dy and rdf — —dxz, the computational rectangle



is defined by L, = 2nr,s, Ly, = Arg, (Ly > L,), and the poloidal field curvature reads:

B2

S
s

Finally, in Egs. 1-5, B, is normalized to the poloidal magnetic field at the wall in
equilibrium, p to po, vy to the poloidal Alfvén speed v4 = /B2 /popo, v to the ion sound
speed ¢, = ,/m%, lengths to the characteristic length in the y-direction L,, and the time to

the poloidal Alfvén time 74 = L, /v4. The normalized set of RMHD equations reads:

V3o = w (7)
1

(O +TL -V — S—Lvi)‘I’—FEO =0 (8)
Dt 7LV -~V Sy = bg.v 9
(t+UJ_' J__E J_)U||+ v = T E VP ()
0 +5. Vi ~DVi)o+S, = /25 V(o) (10)

- I oo s _ R’ 2 2nf dp
(O +vL -V — EVL)W +S, = B-V(V1Y)+ . oz (11)
where S;, = “OLTWA is the Lundquist number (or magnetic Reynolds number), Re = L?’#

is the Reynolds number, and 8 = 2;‘;7’ is the total plasma beta. All magnitudes in the

equations are dimensionless at this point.
Equations 7-11 are discretized in time employing a second-order accurate Crank-Nicolson

difference scheme, as follows:

viertt = ot (12)
\IﬂH‘l _gn . 1 V2 \II'IH—%
A +V,- (UL\II)T“L; - 7LSL = —Fp (13)
1
UﬁL+1 B UﬁL — n+i Vivﬁ+2 /3 .
T + VJ_ : (’UJ_’U”) 2 — T = B Vp) S’U” (14)
P G (G - DVE gt = B-V(pw)""2 - S, 15
A Vi (@) - DV = [ (pv))" 2 = (15)
Wt —n 1 ij_wn"'% i} 218 Op"Te
(T 7 _vLr 7 _ 1
At + VJ_ (UJ_&)) 2 Re (V )] + Lx o Sw ( 6)



where quantities at the n + % time level are calculated as £”+% = 0"+ (1 —0)¢™t! with 0 a
shifting parameter [0 < § < 0.5 for the method to remain implicit; = 0 is backward Euler,
6 = 0.5 achieves a second order accuracy in time, and 6 = 1 is forward Euler (explicit)]. In
the discretization above, it has been taken into account that V, - ¥, = 0 to put advection
terms in conservative form. Spatial operators are discretized using second-order centered
finite differences.

Notice that the first equation in the previous set of difference equations does not involve
a time step, and represents a purely elliptic constraint. This constraint has to be satisfied
to the prescribed tolerance independently of the time step chosen, thus imposing additional
strain on the solver.

Although the time-stepping algorithm is absolutely stable regardless of time step size
due to the implicit differencing, accuracy considerations still limit the maximum time step
size. Crank-Nicolson with § = 0.5 is second order accurate, but it is known to “ring” (i.e., to
propagate weakly damped short-wavelength harmonics) whenever the implicit time step is
much larger than the Courant (diffusion) explicit time step limit. Large implicit time steps
are still possible with 6 ~ 0.48 —0.49, which provides sufficient damping while approximately
preserving the second-order accuracy. We will demonstrate numerical second-order accuracy

in time for @ = 0.5 in Sec. 5.3.1.

3 Jacobian-free Newton-Krylov solver

Once the RMHD equations are discretized in time and space, the problem boils down to
finding the new-time solution Z"! = {®"+1 Y+l 27'|'|1+1, "1, @™ 1T from the current-time
solution #" by solving the nonlinear, coupled system of equations in Egs. 12-16, symbolized
by G(&"*) = 0 (where G = {Gs, Gy, ij” ,G,,G,}T). This is accomplished iteratively with

the Newton-Raphson algorithm, which requires the solution of a series of algebraic systems



of the form:

Jubiy, = —G(T) (17)

Here, J;, = (%—g)k is the Jacobian matrix, 7} is the kth state vector, dz} is the kth Newton
update (from which the (k+1)th Newton state vector is obtained, Fy 1 = Zp + 07%), G(%)
is the vector of residuals, and k is the nonlinear iteration level. Nonlinear convergence is

achieved when:

"é(fk)|‘2 < €pewton ‘é’(fO)HZ (18)

where ||-||, is the Lo-norm, €,eqpton is the Newton convergence tolerance (set to 107* in this
work), and G(i) is the initial residual. Upon convergence, the solution at the new time step
is found as 7" = 4.

Each of these iterative steps requires inverting the Jacobian system in Eq. 17. This is

performed here using Krylov methods [10], because:

1. As stand-alone solvers, they are already competitive against direct or standard iterative

techniques, and have the capability of increased efficiency via adequate preconditioning.

2. All these methods require to proceed is the product of the system matrix times a Krylov
vector ¥, which is provided by the iterative algorithm. In the case of the Jacobian
system above, the Jacobian-vector product can be approximated by the following first-

order difference formula:
G (T + ev) — G(Ty,)
€

where € is small but finite. Thus, the evaluation of the Jacobian-vector product only

requires the function evaluation é(fk + €¥). There is no need to form or store the

Jacobian matrix, and hence the name Jacobian-free.

3. An additional advantage of not forming the Jacobian matrix is that cumbersome d-
ifference schemes (such as conservative and/or high-order difference schemes) are of

straightforward implementation and maintenance.



Among the various Krylov methods available, PGMRES is selected because it guarantees
convergence with nonsymmetric, nonpositive definite systems [13| (the case here because of
flow and wave propagation), and because it provides normalized Krylov vectors |#] = 1, thus
bounding the error introduced in the difference approximation of Eq. 19 (whose leading error
term is proportional to € | ¥ |*) [20]. However, PGMRES can be memory intensive (storage
increases linearly with the number of PGMRES iterations per Jacobian solve) and expensive
(computational complexity of GMRES increases with the square of the number of PGMRES
iterations per Jacobian solve). Thus, minimizing the number of PGMRES iterations per
Jacobian solve is crucial for efficiency. This is accomplished here in two ways: 1) using
inexact Newton techniques [21], and 2) improving the condition number of the Jacobian
matrix by preconditioning the problem.

The inexact Newton method adjusts the PGMRES convergence tolerance at every New-

ton iteration according to the size of the Newton residual, as follows:

|70 + G|, < ¢ |G| (20)

2

where ( is the inexact Newton parameter. Thus, the convergence tolerance of PGMRES is
loose when the state vector 7 is far from the nonlinear solution, but becomes increasingly
tighter as Zj approaches the exact solution. Hence, PGMRES works hard only when the
state vector is close to the exact solution. While the characteristic quadratic convergence rate
of Newton’s method is typically lost with inexact Newton techniques, the gain in PGMRES
performance typically overcomes the slight decrease of the Newton convergence rate (which
nevertheless remains superlinear). The sensitivity of the number of PGMRES iterations to
¢ is shown in Sec. 5.2.3. Values of ¢ ~ 51072 work well for this application.
Preconditioning consists in operating on the system matrix J;, with an operator Py (pre-
conditioner) such that the condition number of Ji Py is close to unity (i.e., JyP, ~ I, the

identity matrix). The Jacobian-free implementation of the right preconditioner operator is

10



straightforward when considering the equivalent system:

—

(JxPy) (P77,) = —G(7) (21)

Thus, PGMRES will solve:
(JuPy)Z = —G (i) (22)

and the Newton update 0% is found upon obtaining Z' by finding 6%, = P,Z. Notice that
the system in Eq. 21 is equivalent to the original system for any nonsingular operator Pj.
Thus, the choice of P, does not affect the accuracy of the final solution; however, it crucially
determines the efficiency of the algorithm.

To solve Eq. 22 using PGMRES, it is required to compute the Jacobian-vector product
(JxPr)U; (where 9; is the Krylov vector of the jth iteration) to proceed. This is implemented

in two steps:

1. Compute 4 = P,v;. This is the so-called preconditioner step. Often, P is not an exact
inverse of any particular matrix, but an approximate inverse —obtained, for instance,
using operator splitting and /or low-complexity MG methods— of the exact Jacobian,
or even an approximate inverse of an approximation of the Jacobian. The specifics of
the formation of the preconditioner operator P, for this application are discussed in

Sec. 4.

G (@ +e)—G(iy)

. , Where € is

2. Compute Jyy using the Jacobian-free approximation: J§ ~

small but finite. Following Refs. [22] and [23], € is calculated here as:

[
N7l

e=10"

where N = NyxN, is the total number of mesh points.

The first step determines the efficiency of the algorithm (and leaves room for exploration,

11



since Py is in principle an arbitrary nonsingular operator), while the second step deter-
mines the accuracy of the solution (according to the discretization of the nonlinear system

G+ = 0)

To maximize efficiency, the preconditioning operator P should approximate the inverse

The rest of the paper will discuss the techniques employed in the first step.

of the Jacobian J; while being relatively inexpensive. There are generally two choices as to

how to approach the preconditioning problem:

1. Algebraic methods: they approximately invert a close representation of the Jacobian
J, obtained analytically or numerically, using inexpensive algebraic techniques (such
as stationary iterative techniques, incomplete Cholesky decomposition, multigrid tech-
niques, etc.). These techniques are “problem-independent” (can be employed in a
variety of different problems), but by the same token they cannot exploit any specific
knowledge of the problem at hand. In addition, they typically require forming and
storing the Jacobian matrix (although forming it once every 5 to 10 Newton iterations

has proven to work well [24]).

2. PDE-based or physics-based methods: they approximately integrate a simplified set
of PDE’s (obtained for instance, by a simple Picard linearization and/or by operator
splitting [12]). They do not require forming and storing the complete Jacobian, and
hence take better advantage of the Jacobian-free implementation than algebraic meth-
ods. In addition, they can be optimized for the problem at hand. Although the general
concept of physics-based preconditioning can be applied to a large variety of problems,

the details of the implementation are typically “problem-specific.”

The latter is the choice here, because it leads to a “distributed” solution, in which only
diagonal blocks need be inverted (see next section). This typically results in more efficient
preconditioners [25], because: 1) while diagonal blocks can be easily constructed to be diag-

onally dominant because they contain elliptic operators, the complete system is usually not

12



diagonally dominant because it contains wave propagation operators in off-diagonal block-
s; and 2) inverting m blocks of dimension NxN (with m the number of equations) is less
expensive than inverting a single m NxmN matrix. In addition, the implementation of MG
techniques for scalar problems is less cumbersome than for systems of equations. The next
section describes in more detail the nature of the approximations employed here to form a

physics-based preconditioner.

4 “Physics-based” preconditioner

Implicit differencing ensures absolutely stable numerical descriptions, for any time step and
level of mesh refinement, by introducing dispersion in waves and by treating elliptic operators
(such as diffusion) nonlocally. However, some of the mechanisms that are source of numer-
ical instabilities in explicit methods continue to manifest themselves in implicit schemes in
the form of ill-conditioned algebraic systems, which iterative techniques have difficulty in
handling.

There are two sources of stiffness in the system of MHD equations: grid stiffness and
wave stiffness. The grid stiffness stems from poorly conditioned matrices resulting from the
discretization of elliptic operators, and manifests itself in a power scaling N® (where a > 0)
of the computational complexity with the number of mesh points N [26]. It is dealt with
here by multigrid preconditioning (MG), which employs low-complexity multilevel solvers
[16, 11] to invert the elliptic operators approximately. The multilevel aspect of MG (which
employs a “divide and conquer” approach by which the different scales of the global solution
are decoupled in multiple grids of varying mesh refinement) typically results in a number of
Krylov iterations virtually independent of the problem size (see results in Sec. 5.3.2).

Wave stiffness also results in ill-conditioned algebraic systems, typically manifesting itself
in a loss of diagonal dominance due to short-wavelength harmonics when the implicit time

step is larger than the explicit wave CFL limit (as a side note, short-wavelength harmonics

13



are also responsible for instability in explicit methods). As a consequence, wave-propagating
algebraic systems are handled poorly by iterative techniques, which typically perform better
with diagonal dominance.

The system of PDE’s in Eqs. 7-11 support propagation of two waves: the shear Alfvén
wave (embodied in Egs. 7, 8, and 11), and the sound wave (Egs. 9 and 10). After lineariza-
tion, and for the equation ordering chosen in Eqs. 12-16, the Jacobian matrix J; of this

system of equations has the following block-matrix structure:

_ Dy 0 0 0 I |
Lew Dy 0 0 0
Je=| Loy Luy Dy Upy O (23)
Lo, Lsy, Ly, D, O
Ls, Lgy 0 L,., D,

Each row of blocks corresponds to a discretized equation. In Eq. 23, I is the identity block,
the D-blocks are the block diagonals [Dg contains the discretization of V2, the blocks D\p,v”,w
contain the discretization of (0; + ¥, - V, — AV?2), with A = {S;', Re™!} depending on the
equation, and D, contains the discretization of (0; + ¥, - V. — DV2 + \/EB'O - V(v)0) +
\/gvﬂ,oéo - V)], and the L-blocks and U-blocks represent couplings between dependent vari-
ables. For the equation ordering chosen, Jj is almost a lower-triangular block matrix, except
for two off-diagonal upper blocks: U,y (which corresponds to the —\/géo -Vdp term in the
linearized form of Eq. 9, and is required for the sound wave), and the identity block I (which
corresponds to dw in the linearization of Eq. 7, and is required for the Alfvén wave). For
large implicit time steps and small transport coefficients A, the derivatives of the shortest
wavelength harmonics supported by the grid (i.e., with the largest wavenumber) will result
in some off-diagonal blocks dominating over the diagonal blocks, and simple block iterative
techniques (such as block symmetric Gauss-Seidel) will fail. Time step sub-cycling in the

preconditioner (so that the time step is close to the explicit CFL limit) would work, but at

14



the cost of efficiency.

Clearly, an alternative route must be found to form a valid preconditioner. One such
approach is to reformulate the physical equations so that the resulting algebraic systems are
diagonally dominant for any wavelength harmonics, despite the wave propagation terms. A
rigorous technique for such transformations is the so-called method of differential approxi-

mation. This is explained further in the next section.

4.1 Method of differential approximation

The method of differential approximation [17] is a rigorous, systematic way of deriving a
new set of PDE’s from the time-difference formulation of the original set of PDE’s. The new

set of PDE’s satisfies several properties:

1. After differencing, the resulting discrete equations are consistent with the original set

of PDE’s to the same order of accuracy as the original set of difference equations.
2. They have the same steady-state solution as the original set of difference equations.

3. The additional terms in the new set of PDE’s are located in the diagonal blocks, and

result in block-diagonally dominant systems.

As mentioned earlier, the system of PDE’s in Eqs. 7-11 support propagation of two waves:
the shear Alfvén wave and the sound wave, whose associated time scales are usually orders

of magnitude smaller than the dynamic time scales of interest. These are discussed next.

4.1.1 Sound wave

The sound wave is propagated by the density equation (Eq. 10) and the parallel velocity
equation (Eq. 9). After linearization (v = v) o + 0v; and p = py + dp, where the subscript

“0” indicates the equilibrium, and the “§” indicates the perturbations) for uniform density

15



and magnetic field and no poloidal flow, the sound wave propagation terms are:

3t(5p = —

géo : V5U|| (25)

Other terms in the linearization are neglected because the goal is not accuracy, but producing
a diagonally dominant formulation of the wave equations. A second-order time-implicit
differencing of these equations yields:

vttt — s B =
[ L _ _. /P nt3

6pn+1 _ 6pn ,8 . n-{—%
A C T\ BV

Taylor-expanding the time difference of dv), we find:

5,Un+1 — Sy At2 n+3
HT-{;” ~ l8t5v|| + ﬂ@ttt&'[}”]

Using the sound wave propagation equations above, we can write:

SN

att(S’UH = (EO . V)251}||

2
and hence the difference form of 9;6v can be rewritten as:

(5vﬁ’+1 — (5v|7|l

AL (26)

(0,60 ~ l1 - mﬁg(éo -V)?

where the constant 21—4 coming from the truncation error analysis has been replaced by a
parameter £ (a sensitivity analysis of the number of PGMRES iterations in terms of & is
presented in Sec. 5.2.2). The difference form in Eq. 26 is to be used for d;0v) in Eq.

24 instead of the standard centered finite difference formula. The same procedure can be

16



followed for the difference form of 9;6p in Eq. 25. However, including the wave-correction
term only in one of the wave equations has proven to work well in practice [3, 5, 17|. Here,
the dv)-equation has been chosen for reasons that will become apparent shortly.

Several comments on Eq. 26 are in order:

1. The additional term (subsequently called “wave-correction operator”) in the difference
form of J;0v) is of the same structure as the so-called semi-implicit operators in MHD
[3, 4, 5, 6]. However, its function here is not to stabilize the numerical method (because
it is already fully implicit), but to produce a diagonally dominant formulation. This
is indeed accomplished because: 1) upon discretization, the wave-correction operator
belongs in the dv; block diagonal, and 2) upon Fourier-analyzing, the diagonal of
dv| contains an additional term o AtﬁkﬁBz, which is positive definite and always
enhances diagonal dominance. In addition, this term is proportional to kﬁ, thus acting

preferentially on short-wavelength harmonics.

2. The wave-correction operator is second order accurate in time, and hence preserves
the order and consistency of the original difference equations (the original PDE’s are
recovered when At — 0). The truncation error analysis performed above places an
upper limit on the wave-correction constant (k < i) to preserve the accuracy of the
solution. Note this limit is significantly smaller than what would be required to stabilize
a semi-implicit formulation (x > % or K > %, depending on the particular semi-implicit

implementation [3, 4, 5]).

3. The wave-correction operator is highly anisotropic. This is in fact crucial for accuracy,
as other authors have also recognized [5, 6], and deviations from it may drastically

affect the results (as shown in Sec. 5.3.1).

4. The wave-correction operator does not modify the steady-state solution of the original

difference equations, because the correction in Eq. 26 is zero whenever 6vﬁ+1 = 6vﬁ.

17



4.1.2 Shear Alfvén wave

The shear Alfvén wave is propagated by the stream function equation (Eq. 7), the vorticity
equation (Eq. 11), and the poloidal flux equation (Eq. 8), and is treated in the same way as
the sound wave. After linearization of the corresponding equations for uniform density and
magnetic field and no poloidal flow, the terms responsible for the Alfvén wave propagation

read:

V36d = fw (27)
8,00 = B,-Véd (28)
dow = By-V(V260) (29)

Other terms in the linearization are neglected. In Eqs. 27-29, it has been taken into account
that, according to the definitions of ¢'; and ép in terms of ® and U respectively, 0v, -V ¥y =
—gp,o-V 100 = —§0-V5<I>. The dw-equation is chosen here for the differential approximation.
In the same way as with the sound wave, a second-order accurate time differencing of 0;0w

yields:
At?

oWt — fwm At?
24

At ~ l@t&u +

n+3
atttéw]

Using the Alfvén wave propagation equations, we find that for a uniform magnetic field:
Oybw = (By - V)V (By - V6®) = (B - V)?w (30)

and thus we arrive at:

1 . n+l n
[8t5w]"+5 ~ [1 — K)At2(BO : V)2] %

which is identical in nature to the sound wave correction operator. This difference form is

to be used for 0;0w in Eq. 29 instead of the standard centered finite difference formula. The
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uniform field approximation works well (i.e., improves efficiency while preserving accuracy)
for smooth, non-uniform magnetic fields because the wave correction operator acts prefer-
entially on the shortest wavelength harmonics of the solution (which are “local” on the grid,
and hence a locally uniform magnetic field is a good enough approximation). Numerical

confirmation of this is presented in Sec. 5.3.

4.2 Formulation of preconditioner operator P,

A modified Jacobian matrix results from the application of the method of differential ap-
proximation to the system of PDE’s at hand, in which some of the sound and Alfvén waves
propagation information is included in the v diagonal block D, , and the w diagonal block
D,,. As aresult, the Jacobian is more diagonally dominant, effectively reducing the effects of
the wave stiffness. Including the wave-correction operators in the Jacobian-free implemen-

tation of Jy requires modifying the original system of difference equations in Eqs. 12-16 as

follows:
Viq)n—l—l — wn+1
gt gn . V2onts
- = A7 p)ytr - 2L —
Ar TV () S, 0
n n ntg
Bz i , v Viy o
1— A2—B*- 20 1 1 . nts _ 1l
[ kAL 2( V) A7 + V.- (Vi) Re
_ [,8 —’ Vp)n—}—% . Sv”
pn—|—1_pn — n+i 2 n+i n-l— -
T+VL (ULp)" T2 = DVip"TE = [B P"’H 2 =5,
1 — kA2(B* - V)2 W — W v wrd Viw"™
[1 - ROP(B 9P S 4 Vs ) -
27rﬁ8p”+2
= [B-V V )| ts - S,
BV (Vi) + SR
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where B* is the magnetic field lagged at the previous Newton iteration (or at the previous
time step at the beginning of the Newton iterative procedure). The inclusion of the wave-
correction terms in the original difference equations is not expected to affect the accuracy
of the solution significantly (neither in magnitude nor in order; see Sec. 5.3.1), because 1)
these corrections can be derived from the original equations, 2) they represent a second-
order correction to the original difference equations, and 3) their magnitude is within the
truncation error of the original difference equations, as long as k < 1/24 (this is numerically
demonstrated in Sec. 5.3.1).

The preconditioner step approximates the inversion of the block Jacobian system J07 =

-G (Z)) (with Jj, having the block structure given in Eq. 23) by the following split algorithm:

68, = Dz'[—Gs(7)]
80, = Dg'(a)[—Lewd®, — Gy(T})]

00, = Dyt(k,a)[—Lay, 5d, — Ly, 50, — év” (Ze)]

u

—

03, = D3'(K,)[~Lawd®, — Lyu68) — L,uofs — Guliy)]

68, = D3'[6a — Golds)]

This gives 6@, = Py[—G(i)]; the generalization for a general system § = P47 is straight-
forward. Two approximations are made in this algorithm: 1) an initial guess for the stream
function update §®, is obtained by neglecting the d&;, term in the linearized stream function
equation; this initial guess is corrected a posteriori (see final step in the previous algorithm).

And 2) the sound wave coupling U,

p,v 0Pk 18 neglected in the 7, equation. In this algorithm,

we are only inverting one equation at a time, and only the block diagonals need be formed,
stored, and inverted (here with low-complexity MG methods). The lower-triangular blocks

L; ; represent specific couplings between dependent variables in the linearized equations, and
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are implemented matrix-free.

In addition, the single time step is artificially reduced in the preconditioner by a constant
a < 1 (so that, instead of i, the preconditioner has ﬁ, which further enhances diagonal
dominance). The dependence of the diagonal blocks on x and « has been indicated explicitly

in the split algorithm outlined previously. The effects of both x and « on the efficiency of
PGMRES are addressed in Sec. 5.2.

4.3 Some comments on implementation of the preconditioner

In what follows, linear and nonlinear results of resistive instabilities (tearing modes) will be
shown to illustrate the properties of the proposed RMHD integration algorithm. In these
problems, B, , = 0 in equilibrium, and it remains small as long as L, > L, (which is the case
here; see Sec. 2). Hence, (B*- V)2 ~ (B*)> V2. With this simplification, the 9-point stencil
(é* - V)? operator is reduced to a 3-point stencil operator, of much simpler implementation.
This approximation exploits the preferential direction of wave propagation in these problems;
for more general applications, the 9-point stencil operator should be employed instead.

In general, the discretization in the preconditioner need not be of the same order of
accuracy as in the original system of difference equations G (%) = 0, thereby greatly simpli-
fying the construction of the preconditioner operator. In fact, lower-order difference schemes
usually work well as preconditioners due to the beneficial effects of smoothing by numeri-
cal dissipation. Here, the preconditioner features, within the diagonal blocks, a first-order
backward Euler time difference scheme (of simpler implementation than a centered scheme),
and a first-order, upwinded discretization of advective terms (which helps with diagonal

dominance).
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5 Results

In what follows, the computational domain is a uniformly discretized Cartesian rectangle
with L, > L, = 1. Boundary conditions in the poloidal plane are periodic in x (recall x
represents the angular coordinate in Fig. 1). In y, we impose no stress (w = 0), perfect
conductor (¥ = 0), and impenetrable wall (& = 0). The boundary conditions of v and p in
y are arbitrary, and are set on a case by case basis, consistently with the initial conditions
of interest (for instance, they can be chosen to sustain a mean parallel velocity shear and /or

a mean density gradient in time).

5.1 Validation tests and applications

The code has been benchmarked successfully against explicit fluid and MHD codes in Kelvin-
Helmholtz and tearing problems, respectively. In what follows, the code is tested by prop-
agating the waves supported by the model (shear Alfvén, sound waves), and by modeling
classical resistive instabilities (tearing modes). A new parallel velocity/tearing mode insta-

bility [27] is also explored.

5.1.1 Wave propagation

The second-order time discretization (using @ = 0.5) allows dissipation-free wave propa-
gation. This has been tested by propagating shear Alfvén and sound waves in a uniform
magnetic field, with zero physical dissipation (¥ = n = D = 0) and no curvature effect-
s (which otherwise would couple both waves). The initial conditions are ¥q = —y (i.e.,
Byp=1and B,y =0), wyp=® = v)0 = 0, and py = 1. The boundary conditions in v and
p are consistent with these initial conditions. Standing waves are excited with &k, = i—z for

both Alfvén and sound waves in a uniform magnetic field, as follows:

e Alfvén wave excitation: 0¥ = esin(7ry) cos(i—:az); 0® = 0.
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e Sound wave excitation: dv = esin(7ry) cos(i—:x); dp=0.

The perturbation constant e is set equal to 1072. Simulation parameters are L, = 3 and
B = 2, so that ¢; = y/3/2 = 1 and v4 = 1 (due to normalization). The wave-correction

parameter is & = z;. The dispersion relation of both waves is w = +k, = +7=, and the

period of both waves is T' = i}l' = L, = 374. The wave propagation is followed with
At = Atcprp and At = 5Atcpr in a 60x60 grid (where Atcpp is the shear Alfvén wave
explicit CFL limit, given by Atcrr = Jf,—z = 0.0574) by calculating the wave kinetic energy.

The results are depicted in Fig. 2. Several remarks are in order:

1. Neither wave decays in amplitude, evidence of the absence of numerical dissipation.

The kinetic energy amplitudes agree with theoretical predictions (% [(2—1)2 + 71'2] =
5.35-1076 for the Alfvén wave, and % = 3.75-1077 for the sound wave). The apparent
decrease in amplitude for At = 5Atcry is in fact periodic and due to sampling errors
of the wave peak due to the large time step employed. Following the wave propagation

further in time shows that the amplitude recovers.

2. The wave period for At = Atcpr is T = 374, as predicted. Increasing the time step to
five times the CFL limit still propagates the waves without dissipation, but introduces
some dispersion (the wave period increases slightly). This is a natural consequence
of the implicit differencing, which employs wave dispersion to stabilize the numerical

scheme.

3. There are no secular errors in the average of the wave kinetic energy (the energy is

purely oscillatory, neither increasing nor decreasing in average).

4. The wave corrections derived in Sec. 4.1 do not modify the nature of the Alfvén and
sound modes. However, when time steps are long compared to the CFL limit, they
do introduce some amount of dispersion [5, 17|, of the same order as that already

introduced by the implicit difference scheme.
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5.1.2 Classical resistive instabilities (tearing mode)

The previous test checks linear wave propagation, in which only certain terms of the equations
enter. Modeling resistive instabilities (tearing modes), however, brings in more physics and
allows us to test both linear and nonlinear physics. The classical tearing mode problem is
initialized with a Harris current sheet Wy(z, y) = + In[cosh A(y — 3)], and @y = wy = v),0 = 0,
and py = 1. The parameter )\ is the inverse of the characteristic width of the current sheet,
and determines the tearing mode growth rate (the larger A, the narrower the current sheet
and the larger the tearing growth rate).

The mode is excited with a perturbation in the poloidal flux ¥ = 102 sin(my) cos(i—:x).
The simulation parameters are L, = 3, A = 5, Re = S = 10%, and 8 = D = 0 (thereby
turning off the curvature term and the v and p equations). The simulation is performed in
a 60x60 grid with At = 574 = 100Atcrr until saturation, which is achieved at Ty ~ 15074.
Plots of ¥, ®, w, and the parallel current j = %Vi\ll at saturation are depicted in Fig. 3,

where several features of tearing modes are visible, namely:
1. The magnetic island (“cat’s eye”) is visible in the contours of the poloidal flux V.

2. The flow organizes itself into four vortices of alternate sign of vorticity on the separatrix,

as shown in the stream function (®) plot.
3. The vorticity w is strongly concentrated on the separatrix.

4. The parallel current j, has a large perpendicular gradient at the separatrix, and is
of similar value at the X- and O-points. The latter is expected to hold exactly at
saturation, because B-V =0 at the X- and O-points, and hence, from the W-equation

(Ohm’s law, Eq. 2), nj ~ Eo.

The tearing mode exponential growth rate for this simulation is v = 0.0424. The theoretical
scaling of v with the Lundquist number Sp is v ~ 5’;3/ ® for an inertial tearing mode (i.e.,

with negligible viscosity) and v ~ S;s/ % for a viscous tearing mode [28]. These scalings are
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valid only asymptotically for large values of Sy. For a fixed viscosity (Re = 10%), the tearing
mode will behave as viscous when Sy, is large, and as inertial when Sy, is small |28]. These
results are reproduced by the code, as shown in Fig. 4. Note that the scalings break down

for small S, as expected.

5.1.3 Parallel velocity shear/tearing instability

The behavior of the classical tearing mode is substantially modified if a parallel velocity
shear exists in the presence of curvature |27]|. This effect brings in all the physics contained
in Egs. 1-5. Although a thorough study of this effect is out of the scope of this work (and
will be subject of future study), a demonstration of some of the new features of the solution
found at saturation is given below.

The simulation set-up is the same as in the previous section, except that now 5 = 0.1,
D = 1073, and the parallel velocity has a sheared initial profile v (z,y,t = 0) = 3(y—1), i.e.,
with parallel velocity shear v|’| = 3 (recall v is normalized to the sound speed). Plots of all
the relevant magnitudes at Ty = 150 74 are given in Fig. 5. Differences between the classical
tearing mode saturation state and the modified tearing mode saturation state are apparent
by comparison with the contour plots in Fig. 3, namely: the stream function presents one
large vortex instead of four smaller vortices (which implies the generation of a poloidal shear
flow); the vorticity profile still shows some structure at the separatrix, although it is no longer
concentrated there; and the parallel current still exhibits peaks of similar value at the X- and
O-points, although slightly tilted around the X-point. The contour plots of v and p are also
depicted. Note that the parallel velocity gradient flattens within the magnetic island. The
structure depicted in the density plot corresponds to density variations with respect to the
average density py = 1; maximum density variations are about 20%, marginally satisfying

the Boussinesq approximation.
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5.2 Fine-tuning of the algorithm

The efficiency of the nonlinear Newton-Krylov solver rests crucially on two elements: 1) the
preconditioner, which requires adjusting the time step parameter o and the wave-correction
parameter £ (both introduced in Sec. 4.2), and 2) the inexact Newton method, which requires
adjusting the inexact Newton parameter ¢ (Eq. 20).

In this section, the parameter space {«, &, (} is explored to maximize efficiency. Maxi-
mizing efficiency requires minimizing the CPU time for a given computation. The CPU time

can be schematically expressed as:

Newton

T
CPUOCNXK];XPGpNX(l-FbXPGpN)X (31)

time step

where N = N,xN, is the total number of mesh points, 7% is the final time (in 74 units), At is
the time step (in 74 units), and PGpN is the number of PGMRES iterations per Newton step.
In Eq. 31, the term PGpN x (1+bx PGpN) represents the computational complexity of the
PGMRES algorithm, which is composed of two elements: 1) a linear term representing the
work of routines associated with the GMRES algorithm (such as preconditioning calls), and
2) a quadratic term b (PGpN)? representing the computational complexity of the GMRES
algorithm itself. Although typically b < 1 (because, in PGMRES, the preconditioner is
initially much more expensive than the GMRES algorithm), the quadratic term will dominate
if PGpN is large enough. Hence, minimizing the CPU-time for given N, At, and T, requires
minimizing PGpN.

The parallel velocity shear/tearing instability described in the previous section (with the
same simulation parameters) is chosen for the subsequent numerical experiments, because
it involves all the equations in the system. Numerical data is averaged over five time steps,
unless otherwise stated. CPU times are obtained in a single 600 MHz Pentium III processor.

The following parameters will remain fixed in all simulations:

e MG parameters: a single V-cycle is employed. The number of grid levels ng.q4 is
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determined from:

. . |log(N,) log(N,

Bgria = int { min g(IVe) log(Ny) || _
log 2 log 2

so that the coarsest grid in either axis (given by min [ﬁﬁ, 2%%]) has at least 4 points

to support the discretization stencil. The residual at each restriction and prolongation

step is smoothed with four passes of symmetric Gauss-Seidel.

e Newton parameters: the Newton nonlinear convergence tolerance (Eq. 18) is set to

_ —4
ENewton = 107

5.2.1 Effect of the parameter «

The parameter o« < 1 modifies the time step in the preconditioner so that Ait becomes ﬁ,
thus enhancing the diagonal dominance. In order to decouple the effects of @« on PGpN
from those of the wave-correction parameter x, the latter is set to zero. The effects of the
parameter « for different mesh refinements and time steps are shown in Fig. 6, showing that
reducing the preconditioner time step decreases PGpN by more than 50% for a ~ 0.3. This
prescription appears to be independent of the grid refinement and the time step size, and

qualitatively holds for x # 0.

5.2.2 Effect of wave-correction parameter

The effect of K on PGpN can be best understood by studying the figure of merit f =

o el (or, equivalently, PGpN(k, N, At,...) = [PGpN(x = 0, N, At,...))%).

Numerical experiments (Fig. 7) show that f ~ f({ = kAt), suggesting that, for fixed

¢ = kAt, f is fairly independent of the choice of N, At. Figure 7 also shows that f(§) — 0.6

for & > 0.1. This represents a noticeable reduction in PGpN when x # 0, particularly in

situations where PGpN is large, as is the case for large time steps. In practice, k is set
At

to z5 (< 35, to preserve accuracy), and £ = . Since & increases with the time step, the

full benefits of the wave-correction correction are available only when required (i.e., for large
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time steps) while preserving the accuracy of the solution at all times.

Actual results for PGpN, the average number of Newton iterations per time step, and the
CPU time, averaged over an entire Ty = 15074 run, are presented in Table 1 for different time
steps, with and without the wave-correction operator. These data have been obtained using
the parallel velocity shear/tearing instability problem in a 60x60 grid, and using o = 0.3
and k£ = 0,1/50. According to this table, the wave correction reduces PGpN according to
the power law above, with an exponent consistent with Fig. 7 [the exponent is ~ 0.69 for
At = 2.5 (£ = 0.05), and ~ 0.65 for At = 5 (£ = 0.1)], and also decreases the average
number of Newton iterations per time step. Hence, the substantial decrease in CPU time
observed in Table 1. In addition, the wave correction results in a very sublinear scaling of
PGpN with At (increasing the time step by a factor of two only increases PGpN by a factor

of 1.1); Sec. 5.3.2 expands further on this issue.

5.2.3 Effect of the inexact Newton method parameter (

The effect of the inexact Newton parameter ( (Eq. 20) on PGpN and the total number
of PGMRES iterations per time step is summarized in Table 2, for the case of a parallel
velocity shear/tearing mode in a 60x60 grid and using o = 0.3 and x = 1/50. This table
shows that increasing ( typically decreases both PGpN and the total number of PGMRES
iterations per time step. Naturally, there exists an upper threshold in ( above which the
Newton update is too inaccurate to effectively guide the Newton iteration to convergence.
Hence, choosing the adequate ¢ may represent an important gain in efficiency. In subsequent

calculations, we use ¢ = 0.05.

5.3 Performance of the algorithm

In this section, we focus on the performance of the algorithm in terms of accuracy, efficiency,
and its capability to handle demanding computations (such as those with large Lundquist

and Reynolds numbers). The efficiency parameters are set to « = 0.3, kK = 51—0, and ¢ = 0.05.
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5.3.1 Performance in accuracy

The algorithm has been constructed to preserve second-order numerical accuracy in time
(if @ ~ 0.5). This is demonstrated numerically in Fig. 8, obtained with # = 0.5 using
the parallel velocity shear/tearing problem in a 60x60 grid. In this figure, the numerical
error is measured as ||¥ — W, at Ty = 30 74, where VU, is a “gauge” solution obtained with
At = Atcpr and no wave correction. These results show that the error scales as At?. Since
the gauge solution does not include wave corrections, Fig. 8 also illustrates that including
the wave correction —as derived in Sec. 4.1 and with k = 1/50— does not significantly affect
the accuracy of the solution. Note that the selected 7% is in the middle of the tearing
transient, so that differences between solutions obtained with and without wave corrections
be noticeable.

In general, the wave correction preserves accuracy if its anisotropic form (given by

kAt2B2V29, for L, > L,), derived by the method of differential approximation, is em-

1

57> 50 that the correction remains within the truncation error tolerance.

ployed with x <
The consequences of violating either of these requirements are clear from Fig. 9, where the
growth history of a classical tearing mode is depicted for no wave correction (NWC) and
for the following wave-correction operators: the proposed anisotropic operator with x = 51—0
(AWC-x = 1/50) and £ = : (AWC-x = 1/5), the anisotropic operator with B, = 1 and
k = 35 (AWC-B, = 1), and an isotropic operator (kAtV?9;) with k = 55 (IWC). These
results have been obtained in a 60x60 grid, with At = 574 = 100Atcrr. While the AWC-
k = 1/50 and the NWC growth histories are virtually superimposed on each other, noticeable
differences appear when « is increased above the accuracy limit (AWC-x = 1/5), or when
the structure of the wave-correction operator is changed (AWC-B, = 1, IWC). The isotropic
wave-correction operator (IWC) is particularly inaccurate in predicting the tearing growth

history (as was also found in Ref. [5]), and should be avoided by all means.

Finally, the effect of different time step sizes on the classical tearing mode growth rate
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« is indicated in Table 3. Clearly, the algorithm preserves the accuracy of the solution even
for yAt ~ 0.43 (i.e., of O(1)!), an order of magnitude larger than the yAt < 0.05 limit
characteristic of linearized semi-implicit implementations [5|. The robustness of the answer

is due to the exactly implicit, time-centered difference scheme.

5.3.2 Performance in efficiency

A grid convergence study is performed using the parallel velocity shear/tearing problem.

The number of Newton iterations per time step ( tlfrﬁzst;’e“p), PGpN, and the CPU time are

monitored for different mesh refinements and time steps for a run extending to Ty = 30 74,

and the results are presented in Tables 4-6. Several comments are in order:

1. The number of Newton iterations per time step remains virtually constant around 3-4,

only increasing slightly for extremely large time steps (in 74 units) or very fine meshes.

2. For fixed At (in CFL units), PGpN remains small (around 10 even for extremely long

time steps) and virtually constant (due to the MG preconditioning).

3. For fixed At (in CFL units), the CPU time normalized to PGpN and mistt";) (CPU)
increases by ~ 8 — 10 when N increases by 4. This is slightly above the O(N®/?)
scaling expected from Eq. 31 for fixed A¢(CFL) (because At(14) ~ %, and
hence CPU ~ N3/2). This result is consistent with observations in previous work [12],
and is due to cache memory effects as the problem size is increased. From the analysis

of the tables, the actual scaling is CPU ~ N6,

4. For fixed N, PGpN scales very sublinearly with At(CFL), with an average exponent
of 0.3.

5. For fixed N, CPU ~ [At(CFL)] ™, as expected from Eq. 31.

Based upon Eq. 31 and these results, and assuming b PGpN < 1, we find that the general s-
caling of the CPU time with N and At(CFL) is CPU ~ PGpN CPU ~ NYS[At(CFL)] %7 ~
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N1 At(14)7%7, suggesting that employing the largest time step compatible with accuracy
in a given calculation is the most efficient route. Note that, for a fixed time step (in 74
units), the scaling of the CPU time with N is close to the optimal scaling of O(N).

As a side note, a profiling study of the algorithm indicates that 30-40% of the CPU time
per time step is spent in the —optimized— symmetric Gauss-Seidel routine. This indicates
that it is not the GMRES algorithm, but the MG-based preconditioner, which is responsible
for the bulk of the CPU time (thus justifying the previous assumption of b PGpN < 1), and
proves that adequate preconditioning can indeed result in an efficient PGMRES implemen-

tation.

5.3.3 Performance with large Lundquist numbers

The fully implicit, fully non-linear RMHD algorithm can handle calculations with realistically
small viscosity and resistivity, in which fine grids are required, and the time scales of interest
are orders-of-magnitude longer than the wave CFL’s on such grids. Here, as an example
of the ability of the algorithm to deal with small resistivity, we solve a parallel velocity
shear/tearing problem with L, = 5, A = 5, 8 = 0.1, v = 3, D = 107%, Re = 10% and
S; = 10° in a 256x128 grid. Nonlinear saturation of the parallel velocity shear/tearing
instability is expected to emerge at T ~ Si/ > = 100074. We target Ty = 150074, using
At =574 (=256 Atcrr)-

The simulation takes 37 CPU-hours in a single Pentium IIT processor, with average

PGpN = 32.8 and average ~on — 4 3 Figure 10 depicts the growth history of the mag-

time step

netic perturbation. The linear evolution is exponential as expected (linear in the logarithmic
plot). At the end of the simulation, the nonlinear phase is starting to kick in. Figure 11

shows snapshots of the evolution of ¥, w, and ® at t = 18574, t = 74074, and t = 1480 74.
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6 Conclusions

An efficient, fully implicit, fully nonlinear, second-order accurate 2D reduced viscous-resistive
MHD solver has been implemented using Jacobian-free Newton-Krylov techniques (PGM-
RES). Convergence is accelerated with a “physics-based” preconditioner, in which an approx-
imate, operator-split solution of the original difference equations is employed. The precondi-
tioner employs multigrid methods (within blocks) to invert the elliptic problems stemming
from the split algorithm, thereby removing grid stiffness. Wave stiffness, on the other hand,
is dealt with by the method of differential approximation (wave correction), which produces
an equivalent, consistent, diagonally-dominant set of difference equations.

The algorithm has been benchmarked by propagating the supported shear Alfvén and
sound waves, and by modeling resistive instabilities (tearing modes) with and without par-
allel velocity shear effects. A grid convergence study of the implicit solver shows that the
performance of the algorithm is nearly optimal with respect to the problem size (because
PGpN scales very weakly with N) and the time step size (because PGpN ~ At(CFL)%3,
which is very sublinear). As a consequence, the CPU-time to reach a target simulation time
scales as CPU ~ N'# At %7 showing a substantial reduction of the computational expense
with the size of the time step, and an almost optimal scaling with N.

The ability of the algorithm to deal with large Lundquist numbers (Sz = 10°) in fine
meshes (256x128) using large time steps (256 Atcrr) has also been demonstrated. Future

efforts will be devoted to develop fully implicit solvers that include Hall MHD physics.
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Tables

Table 1: Efficiency results (PGpN, average number of Newton iterations per time step, total
CPU time) for a parallel velocity shear /tearing instability run of Ty = 15074 in a 60x60 grid,
obtained with & = 0.3 and x = 0, 1/50.

‘ Time step (in 74 units) ‘ PGpN ‘ Slewton ‘ CPU (s) ‘

time step
At=25 k=0 31.9 3.9 1920
At =25, k= 1/50 11.0 3.3 585
At=5.0,k =0 46.1 4.4 1620
At =50, k= 1/50 12.1 3.6 340
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Table 2: Effect of the inexact Newton parameter ( on PGpN and on the total number
of PGMRES iterations per time step (in parentheses) for a parallel velocity shear/tearing
instability run of Ty = 3074 in a 60x60 grid, obtained with o = 0.3 and x = 1/50.

| ( | At=0574 | At =2574 | At =574 | At =1074 |
0.05 | 41 (12.4) | 9.5 (28.6) | 11.3 (34) |13.4 (44.7)
0.01 | 6.0 (12.1) | 14.5 (33.8) | 16.3 (38) | 21.9 (65.7)
0.005 | 7.6 (15.3) | 15.8 (31.5) | 17.3 (34.5) | 22.3 (52)
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Table 3: Classical tearing mode growth rate v in a 60x60 grid using different time steps.
LAt | v |

0.5 74 | 0.0431

2.5 14 | 0.0432

5714 | 0.0424
10 74 | 0.0429
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Table 4: Grid convergence study with At = 20Atcpr. CPU is the CPU time normalized to
PGpN and Newton

timestep *

Grid | At(ra); Nar | 2220 | PGpN | CPU time (s) | CPU
32x32 | 1.875; 16 3 6 23 1.27
64x64 | 0.9375; 32 3 5.9 200 11.9
128x128 | 0.46375; 64 | 3 6.4 2031 106
256x256 | 0.234375; 128 | 4 7.75 29245 943
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Table 5: Grid convergence study with At = 40Atcpyr.

Grid | At(ra); Na¢ | 222 T PGpN | CPU time (s) | CPU
32x32 | 3.75; 8 3 6.3 13 0.63
64x64 | 1.875;16 | 31 | 84 127 4.9
128x128 | 0.9375;32 | 32 | 94 1450 13
256x256 | 0.46875; 64 | 4 10 17892 447
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Table 6: Grid convergence study with At = 160AtcryL.

Grid | At(ra); Na¢ | 222 T PGpN | CPU time (s) | CPU

32x32 15; 2 4 10.9 6 0.14

64x64 75,4 35 | 107 45 1.2
128x128 | 3.75; 8 33 | 118 448 11.5
256x256 | 1.875;16 | 4.1 | 11.3 5088 110
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Figure legends

Figure 1: Cross section of plasma cylinder with details of the position r.; and thickness
Arg, of the annulus considered around rational surface, as well as the cylindrical coordinate
system employed.

Figure 2: Plots of the kinetic energy (K.E.) of Alfvén and sound waves as a function of
time (in 74 units), propagated with At = Atcpr (best-resolved wave) and At = 5Atcrr
(worst-resolved wave).

Figure 3: Plots of poloidal flux function ¥, stream function ®, vorticity w, and parallel
current j, = V2, corresponding to a saturated classical tearing mode (Ty = 1507,4) with
L, =3,A=5, Re =S, =10% in a 60x60 grid.

Figure 4: Variation of the classical tearing mode growth rate v with the Lundquist
number Sy, for a fixed Reynolds number Re = 103. Different theoretical scalings are shown
for comparison (y ~ S;‘r’/ % for a viscous tearing mode, and y ~ SE?’/ % for an inertial tearing
mode).

Figure 5: Plots of the relevant magnitudes at saturation (T = 15074) of a tearing mode
in the presence of parallel velocity shear and curvature. The simulation parameters are
L,=3,A=5Re=5,=10% D=10"3 B=0.1, and v| = 3 in a 60x60 grid.

Figure 6: Plot of the reduction factor in PGpN due to the parameter a, for different time
steps and mesh refinements. The graph shows that PGpN decreases by 50% for o ~ 0.3,

and this prescription is fairly independent of time steps and mesh refinements.

Figure 7: Plot of f = lolgﬁgggfzég’g J’VA,Z&-,-.).].)] as a function of & = kAt for different time steps
and mesh refinements.

Figure 8: Scaling of error with At (measured in Atcpy units) for a parallel velocity
shear/tearing instability in a 60x60 grid. The error is measured in ¥ at Ty = 3074 with

respect to a gauge solution obtained with At = Atcpr and no wave-correction terms.

Figure 9: Growth histories of the parallel velocity shear/tearing instability using different
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wave corrections. These results have been obtained in a 60x60 grid with At = 574 =
100Atcry.

Figure 10: Parallel velocity shear/tearing instability evolution with L, = 5, A = 5,
B =0.1, v|'| =3, D=10"3, Re =10%, and S; = 10° in a 256x128 grid and using At = 574.
The initial noise is due to the large time step employed.

Figure 11: Snapshots in time of ¥, w, and ® at ¢ = 18574 (first row), ¢ = 74074
(second row), and t = Ty = 148074 (third row) during the evolution of the parallel velocity

shear/tearing instability in a 256x128 grid, using At = 574.
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